
Column #101: PlayStation Control Redux

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 133

Column #101 September 2003 by Jon Williams:

PlayStation Control Redux

I often say to friends, and in fact have stated right here in my column, that I feel like I'm one
of the luckiest guys in the whole world. Now, don't worry, I won't bore you with the myriad
reasons I could use to back up that statement, but I will say that on of them is the job I get to
do and all the neat people I get to meet in the course of doing that job.

A small part of my job with Parallax involves training. Back in June I had the very good
fortune to be invited to teach BASIC Stamps at IBM's EXITE (Exploring Interests in
Technology and Engineering) camp for girls here in the Dallas/Fort Worth area. It was fun, if
not a very tough assignment. Not the course material, mind you, I'm pretty good with BASIC
Stamps. The audience ... a whole different story: twenty-odd thirteen-year-old girls who
didn't have a background in electronics or computer programming.

Perhaps it's a sign that at 41 I am finally getting old, but teenagers today seem significantly
more sophisticated and cynical than when I was a kid. I knew that if I was going to last all
four days that I would have to start strong. So, on day one (Monday), I retrieved a Sony
PlayStation® game controller from my backpack and held it in the air for the girls to see.
"Does anyone know what this is?" I asked. Of course, every single one of them knew what it
was and responded accordingly. Then, I planted the seed that I hoped would get and maintain
their attention. "No, it isn't. This, my new friends, is a robot controller and I will prove it to
you on Thursday." It seemed to work. With the minor exception of a couple of "bad attitude"

Column #101: PlayStation Control Redux

Page 134 • The Nuts & Volts of BASIC Stamps (Volume 4)

girls, the rest seemed genuinely interested in how they could control a robot with a device that
they all knew very well.

Thank You, Aaron

Before I go any further let me admit that I got started with the PlayStation controller because
of Aaron Dahlen's neat article published in Nuts & Volts back and June. About a year ago, I
had some interest in the controller, but never got around to doing anything with it. So my
thanks go to Aaron for his work and getting me off my duff. My hope is that I can expand on
Aaron's information so you can get more use from the controller.

Building An Interface

The toughest part about working with the PlayStation controller is building the
mechanic/electrical interface, and most of that is very simple; it's the connector that is the
tough part. The socket that accepts the odd 9-pin controller plug is a Sony product, and not
something you can purchase readily. I did find a couple of places on the Internet that sell
repair parts for games, but these were not new parts – they had been removed from damaged
PlayStations, and none were cheap.

I solved this problem by purchasing a $10 PlayStation extension cable and carefully hacking
the socket from one end of it. The socket is attached to a PCB with professional strength
contact cement and a bit of hot glue (be careful!) is used to secure the wires. Figure 101.1
shows the schematic for my version of Aaron's interface. This circuit varies from Aaron's
only in [trivial] component values and the use of 220-ohm resistors on any BASIC Stamp pin
that is used as an output – I do this for safety in case the controller fails. Also note that the 9V
connection to pin 3 of the controller is optional (dual-shock motor power) and not required for
our experiments.

Column #101: PlayStation Control Redux

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 135

Figure 101.1: PlayStation BASIC Stamp Interface

Shifting Bits – Automatic and Manual Modes

Part of the reason I decided to write about the PlayStation controller after Aaron's excellent
article has to do with an oddity in the values returned when using SHIFTIN (more on that in a
minute) and I wanted to create code that would tell the BASIC Stamp what kind of controller
is attached. Controller type detection is not possible using the SHIFTOUT/SHIFTIN method
since the PlayStation controller sends its device type to the game console (or our Stamp) when
the data request byte ($42) is being sent to the controller. Figure 101.2 shows how data is
exchanged between the master and the controller, and how the overlap occurs on the second
byte of the transfer.

Column #101: PlayStation Control Redux

Page 136 • The Nuts & Volts of BASIC Stamps (Volume 4)

Figure 101.2: Data Exchange Between Master and Controller Showing Overlap
on Second Byte of Transfer

Knowing the type (or current mode) and if the device is ready can be very useful, so how can
we retrieve this data? We do it by creating a manual function to shift data to and from the
controller simultaneously. While this may sound a bit complex, it really isn't. Back in the
BS1 days we had to create our own shift functions for synchronous devices; we'll just build on
those strategies.

Here's a bit of code we can use to send a byte to and receive a byte from the controller.

PSX_TxRx:
 FOR idx = 0 TO 7
 PsxCmd = psxOut.LOWBIT(idx)
 PsxClk = ClockMode
 psxIn.LOWBIT(idx) = PsxDat
 PsxClk = ~ClockMode
 NEXT
 RETURN

As you can see, the code is quite straightforward. A FOR-NEXT loop accommodates eight
bits. A bit from the command byte is put onto the PsxCmd pin before the controller clock line
is pulled low. While the clock line is low, the PsxDat line can be scanned and the bit stored
in psxIn. The clock line is returned high and the process is repeated for all bits. Notice that
this routine works LSB to MSB.

Before we continue with the code, let me address an issue that occurs when using SHIFTIN to
retrieve all six data bytes from the PlayStation controller. If you've run Aaron's demo
program you have probably noticed that the left joystick Y-axis (up-down) does not span the
entire range; its range is 128 to 255. This seemed odd to me and after a bit of investigation, I
believe I know why this is happening.

Take a look at Figure 101.3. This graphic shows the how the PlayStation controller sampling
is handled. Notice that the bit sampling – as with our code sample above – takes place while
the clock line is being held low.

Column #101: PlayStation Control Redux

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 137

Figure 101.3: PlayStation Controller Last Few Bits of the Last Byte

Now take a look at Figure 101.4. This diagram shows how the controller is sampled when
using SHIFTIN; specifically the last few bits of the last byte of the sequence.

Column #101: PlayStation Control Redux

Page 138 • The Nuts & Volts of BASIC Stamps (Volume 4)

Figure 101.4: PlayStation Controller Sampling Occurs While Clock Line is Low

Notice that the BASIC Stamp doesn't actually sample the data line until after the clock line is
released. This normally isn't an issue, but becomes one for the PlayStation controller. What
happens is that the controller can count the clock pulses and when it detects the release of the
final clock pulse it releases the data line – which is pulled up through a 4.7K resistor so the
last bit (Bit7) of the final byte in the sequence is always 1. This explains why we never see a
value lower than 128 on the left joystick Y axis. The manual code does not suffer this
problem. That said, I confirmed my suspicion about SHIFTIN by structuring the manual code
so that it dropped the clock line before sampling – it behaved exactly like SHIFTIN does.

The manual version is slower however, by a significant factor so we have to make a choice
between speed and accuracy. If you're using a digital controller or don't need the left joystick
inputs, they you can get away with using SHIFTIN. If you need to verify the device type, or
need both joysticks, then you'll need to use manual code. Let's go ahead and take a look at the
routine that transfers the full controller packet.

Column #101: PlayStation Control Redux

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 139

Get_PSX_Packet:
 LOW PsxAtt
 psxOut = $01 : GOSUB PSX_TxRx
 psxOut = $42 : GOSUB PSX_TxRx
 psxId = psxIn
 psxOut = $00 : GOSUB PSX_TxRx
 psxStatus = psxIn
 GOSUB PSX_TxRx : psxThumbL = psxIn
 GOSUB PSX_TxRx : psxThumbR = psxIn
 GOSUB PSX_TxRx : psxJoyRX = psxIn
 GOSUB PSX_TxRx : psxJoyRY = psxIn
 GOSUB PSX_TxRx : psxJoyLX = psxIn
 GOSUB PSX_TxRx : psxJoyLY = psxIn
 HIGH PsxAtt
 RETURN

The routine starts as we expect by pulling the PsxAtt line low. This activates the controller –
it works just like a chip select line (just as the controller behaves as a multi-byte shift
register). The first byte out is $01 (start), followed by $42 (get data). At this point the
controller type is available in psxIn and gets transferred to psxId for later use. The next byte
out is $00; the return value at this point is the controller status which should be $5A ("ready").
We can use this byte to detect the presence of the controller. If it was unplugged, for
example, the psxId and psxStatus bytes would both be $FF. The next six bytes in are the
button states and joystick values. At the end of the sequence we disconnect the controller
from the buss by taking the PsxAtt line high.

Speeding It Up

I was very happy to get the manual code working and be able to detect the controller type and
read all of the joystick data – until I timed it to find that it takes nearly 145 milliseconds on a
stock BS2. That's just way to long. Look at Figure 101.2 again. The only time we really
need to use the manual (slow) shifting is when something is coming back at the same time and
a command byte is going out, and on the final byte so that we can read all eight bits properly.
Combining techniques, we get this:

Get_PSX_Packet_Fast:
 IF (ClockMode = Direct) THEN Get_PSX_Packet
 LOW PsxAtt
 SHIFTOUT PsxCmd, PsxClk, LSBFIRST, [$01]
 psxOut = $42 : GOSUB PSX_TxRx
 psxId = psxIn
 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxStatus]

Column #101: PlayStation Control Redux

Page 140 • The Nuts & Volts of BASIC Stamps (Volume 4)

 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxThumbL]
 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxThumbR]
 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxJoyRX]
 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxJoyRY]
 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxJoyLX]
 GOSUB PSX_TxRx : psxJoyLY = psxIn
 HIGH PsxAtt
 RETURN

Another thing this routine does is check the interface type we're using based on a constant
definition. The transistor inverter can be eliminated, but what this means is that we must use
manual shifting only. If we set the ClockMode value for direct (just a current limiter, no
inverter) then it will force the program to the *slow* version of the code.

By combining techniques, over 100 milliseconds in execution can be shaved off the routine –
this is valuable time when controlling a robot. The rest of the demo program (please
download from the Nuts & Volts site) displays the controller type and values from it. Figure
101.5 shows the breakdown of the data packet. Note that the shaded areas are only applicable
when the controller type is $73 (analog). My experience is that the Sony analog controller,
when running in digital mode, will disable the analog joysticks. However, a clone controller
made by Pelican Accessories simulates the button presses with the analog joysticks when
running in digital mode. I did confirm Aaron's observation that the clone controller does not
have the same resolution on the analog joysticks as the Sony, so be wary of that.

Let the Robot Roll

Finally, what about the robot I promised the girls at the IBM EXITE camp? Well, as you can
see by the photo in Figure 101.6 I kept my promise and brought a robot that uses the
PlayStation controller. The young lady in the photo is one the stars of the BASIC Stamp
class; her name is Diana and she did a great job with the BASIC Stamp despite never working
with electronics or computer programming. She also had no trouble driving the Boe-Bot with
the PlayStation controller – just as we would expect.

Column #101: PlayStation Control Redux

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 141

Figure 101.5: Data Packet Breakdown

Let this be a lesson to all of us: It's often a good idea to design toward customer expectations;
in fact, it is usually the best idea. I've worked with a lot of young engineers who – in an effort
to make their mark on the world – design things differently just for the sake of being different.
I'm going to suggest you be careful to avoid this [ego-driven] trap, as it often leads to
customer frustration and disappointment for you, the hard-working engineer. Remember that
being original doesn't mean you have to be "different."

Column #101: PlayStation Control Redux

Page 142 • The Nuts & Volts of BASIC Stamps (Volume 4)

Okay, now you have a "standardized" interface device that is well known to a wide range of
customers and several options for using it. How might you use this standard interface to
create something original?

Another Contest

Would you like to have a spare Stamp for your collection? Perhaps try one that you don't
currently own? Okay, let me tell you how you can get a brand-new Stamp at no charge: You
simply need to send me working BS2 code for the Sony Dual-Shock controller that selectively
activates the motors (the 9V connection to pin 3 of the controller is for the motors). I am
actively pursuing this myself, but publishing deadlines for the article prevented me from
getting it working. Once I do – or someone shows me how – I will make that code available
to everyone, and the person who sends me the code will get his or her choice of new BASIC
or Javelin Stamp. Any takers?

Until next month, Happy Stamping.

Column #101: PlayStation Control Redux

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 143

Figure 101.6: Diana Drives a Boe-Bot with PlayStation Controller

Column #101: PlayStation Control Redux

Page 144 • The Nuts & Volts of BASIC Stamps (Volume 4)

' ===
'
' File...... PSX_Demo.BS2
' Purpose... PlayStation Controller Interface
' Author.... Jon Williams
' E-mail.... jwilliams@parallax.com
' Started...
' Updated... 17 JUL 2003
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---

' This program demonstrates the essential interface between the BASIC
' Stamp and a Sony PlayStation (or compatible) game controller. This
' code assumes that the clock signal is inverted between the Stamp and
' the controller to allow simpler [less sophisticated] interface with
' SHIFTOUT and SHIFTIN.
'
' Note: The interface and portions of code are based on previous work by
' Aaron Dahlen.

' -----[Revision History]--

' -----[I/O Definitions]---

PsxAtt PIN 8 ' PSX joystick interface
PsxClk PIN 9
PsxCmd PIN 10
PsxDat PIN 11

' -----[Constants]---

Inverted CON 1 ' inverted clock signal
Direct CON 0 ' no inverter in clock line
ClockMode CON Inverted

' -----[Variables]---

idx VAR Nib ' loop counter
psxOut VAR Byte ' byte to controller
psxIn VAR Byte ' byte from controller

Column #101: PlayStation Control Redux

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 145

' joystick packet

psxID VAR Byte ' controller ID
psxThumbL VAR Byte ' left thumb buttons
psxThumbR VAR Byte ' right thumb buttons
psxStatus VAR Byte ' status ($5A)
psxJoyRX VAR Byte ' r joystick - X axis
psxJoyRY VAR Byte ' r joystick - Y axis
psxJoyLX VAR Byte ' l joystick - X axis
psxJoyLY VAR Byte ' l joystick - Y axis

' -----[EEPROM Data]---

' -----[Initialization]--

Setup:
 HIGH PsxAtt ' deselect PSX controller
 OUTPUT PsxCmd
 PsxClk = ~ClockMode ' release clock
 OUTPUT PsxClk ' make clock an output

' -----[Program Code]--

Main:
 DO
 GOSUB Get_PSX_Packet_Fast ' type and packet
 DEBUG HOME, "Type = "

 IF (psxStatus = $5A) THEN
 DEBUG IHEX2 psxId, " (", IHEX2 psxStatus, ")",
 CLREOL, CR, CR,
 BIN8 psxThumbL, " ", BIN8 psxThumbR, " "

 IF (psxId <> $41) THEN
 DEBUG DEC3 psxJoyLX, " ", DEC3 psxJoyLY, " ",
 DEC3 psxJoyRX, " ", DEC3 psxJoyRY
 ELSE
 DEBUG CLREOL
 ENDIF
 ELSE
 DEBUG "Unknown. No response.", CR, CLRDN
 PAUSE 1000
 ENDIF
 PAUSE 100
 LOOP

 END

Column #101: PlayStation Control Redux

Page 146 • The Nuts & Volts of BASIC Stamps (Volume 4)

' -----[Subroutines]---

' This routine REQUIRES inverted clock signal from
' Stamp to PSX controller

Get_PSX_Buttons:
 IF (ClockMode = Direct) THEN Get_PSX_Packet ' redirect if not inverted
 LOW PsxAtt
 SHIFTOUT PsxCmd, PsxClk, LSBFIRST, [$01, $42]
 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxThumbL, psxThumbL, psxThumbR]
 psxId = $41
 HIGH PsxAtt
 RETURN

' This routine manually creates the clock signal,
' so it can be used with a direct (via 220 ohm resistor)
' connection to the clock input
'
' Execution time on BS2 is ~145 ms.

Get_PSX_Packet:
 LOW PsxAtt ' select controller
 psxOut = $01 : GOSUB PSX_TxRx ' send "start"
 psxOut = $42 : GOSUB PSX_TxRx ' send "get data"
 psxId = psxIn ' save controller type
 psxOut = $00 : GOSUB PSX_TxRx
 psxStatus = psxIn ' should be $5A ("ready")
 GOSUB PSX_TxRx : psxThumbL = psxIn ' get PSX data
 GOSUB PSX_TxRx : psxThumbR = psxIn
 GOSUB PSX_TxRx : psxJoyRX = psxIn
 GOSUB PSX_TxRx : psxJoyRY = psxIn
 GOSUB PSX_TxRx : psxJoyLX = psxIn
 GOSUB PSX_TxRx : psxJoyLY = psxIn
 HIGH PsxAtt ' deselect controller
 RETURN

' Transmit psxOut to, and receive psxIn from the
' PSX controller

PSX_TxRx:
 FOR idx = 0 TO 7
 PsxCmd = psxOut.LOWBIT(idx) ' setup command bit
 PsxClk = ClockMode ' clock the bit
 psxIn.LOWBIT(idx) = PsxDat ' get data bit
 PsxClk = ~ClockMode ' release clock
 NEXT
 RETURN

Column #101: PlayStation Control Redux

The Nuts & Volts of BASIC Stamps (Volume 4) • Page 147

' This routine combines manual and built-in shifting
' routines to get the best speed and all valid data.
'
' Execution time on BS2 is ~40 ms.

Get_PSX_Packet_Fast:
 IF (ClockMode = Direct) THEN Get_PSX_Packet ' redirect if not inverted
 LOW PsxAtt ' select controller
 SHIFTOUT PsxCmd, PsxClk, LSBFIRST, [$01] ' send "start"
 psxOut = $42 : GOSUB PSX_TxRx ' send "get data"
 psxId = psxIn ' save controller type
 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxStatus] ' should be $5A ("ready")
 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxThumbL]
 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxThumbR]
 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxJoyRX]
 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxJoyRY]
 SHIFTIN PsxDat, PsxClk, LSBPOST, [psxJoyLX]
 GOSUB PSX_TxRx : psxJoyLY = psxIn
 HIGH PsxAtt ' deselect controller
 RETURN

